Skip to contents

triad census with node attributes

Usage

triad_census_attr(g, vattr)

Arguments

g

igraph object. should be a directed graph

vattr

name of vertex attribute to be used

Value

triad census with node attributes

Details

The node attribute should be integers from 1 to max(attr). The output is a named vector where the names are of the form Txxx-abc, where xxx corresponds to the standard triad census notation and "abc" are the attributes of the involved nodes.

The implemented algorithm is comparable to the algorithm in Lienert et al.

References

Lienert, J., Koehly, L., Reed-Tsochas, F., & Marcum, C. S. (2019). An efficient counting method for the colored triad census. Social Networks, 58, 136-142.

Author

David Schoch

Examples

library(igraph)
set.seed(112)
g <- sample_gnp(20, p = 0.3, directed = TRUE)
# add a vertex attribute
V(g)$type <- rep(1:2, each = 10)
triad_census_attr(g, "type")
#>  T003-111  T003-112  T003-122  T003-222  T012-111  T012-121  T012-112  T012-122 
#>         8        33        28         7        32        40        31        19 
#>  T012-211  T012-221  T012-212  T012-222 T021D-111 T021D-211 T021D-112 T021D-212 
#>        27        41        25        26         9        19        19        21 
#> T021D-122 T021D-222  T102-111  T102-112  T102-122  T102-211  T102-212  T102-222 
#>         7        10        11        18        16         5        19        10 
#> T021C-111 T021C-211 T021C-121 T021C-221 T021C-112 T021C-212 T021C-122 T021C-222 
#>        17        23        29        17        19         7        24        10 
#> T111U-111 T111U-121 T111U-112 T111U-122 T111U-211 T111U-221 T111U-212 T111U-222 
#>         9        16         7        21         5        13        10         6 
#> T021U-111 T021U-112 T021U-122 T021U-211 T021U-212 T021U-222 T030T-111 T030T-121 
#>        11        19        13         3        14         7        11        11 
#> T030T-112 T030T-122 T030T-211 T030T-221 T030T-212 T030T-222 T120U-111 T120U-112 
#>        11        13        10        14         8         5         1         8 
#> T120U-122 T120U-211 T120U-212 T120U-222 T111D-111 T111D-121 T111D-112 T111D-122 
#>         6         0         4         4         4        12         8        13 
#> T111D-211 T111D-221 T111D-212 T111D-222  T201-111  T201-112  T201-121  T201-122 
#>        14        20        10        15         0         5         3         5 
#>  T201-221  T201-222 T030C-111 T030C-112 T030C-122 T030C-222 T120C-111 T120C-121 
#>         3         3         2        12        14         3         3         8 
#> T120C-211 T120C-221 T120C-112 T120C-122 T120C-212 T120C-222 T120D-111 T120D-112 
#>         7         5         5         7         7         6         0         9 
#> T120D-211 T120D-212 T120D-122 T120D-222  T210-111  T210-121  T210-211  T210-221 
#>         1         9         4         1         2         8         3         5 
#>  T210-112  T210-122  T210-212  T210-222  T300-111  T300-112  T300-122  T300-222 
#>         1         3         5         5         0         1         0         2