This vignette describes the importance of indirect relations on networks, how they are used in centrality indices and how they are implemented in the `netrankr`

package.

A one-mode network can be described as a *dyadic variable* \(x\in \mathcal{W}^\mathcal{D}\), where \(\mathcal{W}\) is the value range of the network (in the simple case of unweighted networks \(\mathcal{W}=\{0,1\}\)) and \(\mathcal{D}=\mathcal{N}\times\mathcal{N}\) describes the dyadic domain of actors \(\mathcal{N}\).

Observed presence or absence of ties (the value range is binary) is usually not the relation of interest for network analytic tasks. Instead, mostly implicitly, relations are *transformed* into a new set of *indirect* relations on the basis of the *observed* relations. As an example, consider (geodesic) distances in the underlying graph. While they are fairly easy to derive from an observed network of contacts, it is impossible for actors in a network to answer the question “How far away are you from others you are not connected with?”. We denote generic transformed networks from an observed network \(x\) as \(\tau(x)\).

With this notion of indirect relations, we can express all centrality indices in a common framework as \[
c_\tau(i)=\sum\limits_{t \in \mathcal{N}} \tau(x)_{it}
\] Degree and closeness centrality, for instance, can be obtained by setting \(\tau=id\) and \(\tau=dist\), respectively. Others need several additional specifications which can be found in Brandes (2016) or Schoch & Brandes (2016).

With this framework, all centrality indices can be characterized as degree-like measures in a suitably transformed network \(\tau(x)\).

`netrankr`

package```
library(netrankr)
library(igraph)
```

The `netrankr`

package implements a great variety of indirect relations that are (or could be) used for centrality related considerations in a network. All indirect relations can be computed with the `indirect_relations()`

function, by specifying the `type`

parameter.

```
g <- graph.empty(n=11,directed = FALSE)
g <- add_edges(g,c(1,11,2,4,3,5,3,11,4,8,5,9,5,11,6,7,6,8,
6,10,6,11,7,9,7,10,7,11,8,9,8,10,9,10))
V(g)$name <- 1:11
#adjacency
A <- indirect_relations(g,type="identity")
#geodesic distances
D <- indirect_relations(g,type="geodesic")
#dyadic dependencies (as used in betweenness centrality)
B <- indirect_relations(g,type="dependencies")
#resistance distance (as used in information centrality)
R <- indirect_relations(g,type="resistance")
```

The function takes an additional parameter `FUN`

which passes an additional function to further specify the transformation. The main use is to obtain walk based indirect relations

```
#count the limit proportion of walks (used for eigenvector centrality)
W <- indirect_relations(g,type="walks",FUN=walks_limit_prop)
#count the number of walks of arbitrary length between nodes, weighted by
#the inverse factorial of their length (used for subgraph centrality)
S <- indirect_relations(g,type="walks",FUN=walks_exp)
```

Additional parameters can also be passed to calculate parameterized versions of relations.

```
#Calculate dist(s,t)^-alpha
D <- indirect_relations(g,type="geodesic",FUN=dist_dpow,alpha=2)
```

To view all predefined transformation functions type `?transform_relations`

. The predefined functions follow the naming scheme `<relation>_<transformation>`

. The functions `dist_`

are thus only meaningful for `type="geodesic"`

or `type="resistance"`

and `walks_`

for `type="walks"`

. The predefined functions are not exhaustive and just constitute the most common transformations. It is, however, straightforward to pass your own transformation function.

```
dist_integration <- function(x){
x <- 1 - (x - 1)/max(x)
}
D <- indirect_relations(g,type="geodesic",FUN=dist_integration)
```

The function `dist_integration()`

computes \[
\tau(x)_{ij}=1-\frac{dist(i,j)-1}{max_{i,j}\; dist(i,j)}
\] which is used in the centrality index *integration* defined by Valente and Foreman (1998)