Skip to contents

This vignette describes methods to analyse all possible centrality rankings of a network at once. To do so, a partial rankings as computed from neighborhood-inclusion or, more general, positional dominance is needed. In this vignette we focus on neighborhood-inclusion but note that all considered methods are readily applicable for positional dominance. For more examples consult the tutorial.


Theoretical Background

Neighborhood-inclusion or induces a partial ranking on the vertices of a graph G=(V,E)G=(V,E). We write uvu\leq v if N(u)N[v]N(u)\subseteq N[v] holds for two vertices u,vVu,v \in V. From the fact that uvc(u)c(v) u\leq v \implies c(u) \leq c(v) holds for any centrality index c:Vc:V\to \mathbb{R}, we can characterize the set of all possible centrality based node rankings. Namely as the set of rankings that extend the partial ranking “\leq” to a (complete) ranking.

A node ranking can be defined as a mapping rk:V{1,,n},rk: V \to \{1,\ldots,n\}, where we use the convention that uu is the top ranked node if rk(u)=nrk(u)=n and the bottom ranked one if rk(u)=1rk(u)=1. The set of all possible rankings can then be characterized as ()={rk:V{1,,n}:uvrk(u)rk(v)}. \mathcal{R}(\leq)=\{rk:V \to \{1,\ldots,n\}\; : \; u\leq v \implies rk(u)\leq rk(v)\}. This set contains all rankings that could be obtained with a centrality index.

Once ()\mathcal{R}(\leq) is calculated, it can be used for a probabilistic assessment of centrality, analyzing all possible rankings at once. Examples include relative rank probabilities (How likely is it, that a node uu is more central than another node vv?) or expected ranks (How central do we expect a node uu to be).

It most be noted though, that deriving the set ()\mathcal{R}(\leq) quickly becomes infeasible for larger networks, and one has to resort to approximation methods. These and more theoretical details can be found in

Schoch, David. (2018). Centrality without Indices: Partial rankings and rank Probabilities in networks. Social Networks, 54, 50-60.(link)


Exact Probabilities in the netrankr Package

Before calculating any probabilities consider the following example graph and the rankings induced by various centrality indices, shown as rank intervals (consult this vignette for details).

data("dbces11")
g <- dbces11

#neighborhood inclusion 
P <- g %>% neighborhood_inclusion(sparse = FALSE)

#without %>% operator:
# P <- neighborhood_inclusion(g)

cent_scores <- data.frame(
   degree=degree(g),
   betweenness=round(betweenness(g),4),
   closeness=round(closeness(g),4),
   eigenvector=round(eigen_centrality(g)$vector,4),
   subgraph=round(subgraph_centrality(g),4))

plot(rank_intervals(P),cent_scores = cent_scores)

Notice how all five indices rank a different vertex as the most central one.

In the following subsections the output of the function exact_rank_prob() are described which may help to circumvent the potential arbitrariness of index induced rankings. But first, let us briefly look at all the return values.

res <- exact_rank_prob(P)
res
## Number of possible centrality rankings:  739200 
## Equivalence Classes (max. possible): 11 (11)
## - - - - - - - - - - 
## Rank Probabilities (rows:nodes/cols:ranks)
##            1          2          3          4          5           6          7
## A 0.54545455 0.27272727 0.12121212 0.04545455 0.01298701 0.002164502 0.00000000
## B 0.27272727 0.21818182 0.16969697 0.12727273 0.09090909 0.060606061 0.03636364
## C 0.00000000 0.16363636 0.21818182 0.20909091 0.16883117 0.119047619 0.07272727
## D 0.00000000 0.02727273 0.05151515 0.07272727 0.09090909 0.106060606 0.11818182
## E 0.00000000 0.00000000 0.01818182 0.04545455 0.07532468 0.103463203 0.12727273
## F 0.00000000 0.05454545 0.08484848 0.10000000 0.10649351 0.108658009 0.10909091
## G 0.00000000 0.05454545 0.08484848 0.10000000 0.10649351 0.108658009 0.10909091
## H 0.00000000 0.02727273 0.05151515 0.07272727 0.09090909 0.106060606 0.11818182
## I 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.090909091 0.09090909
## J 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.090909091 0.09090909
## K 0.00000000 0.00000000 0.01818182 0.04545455 0.07532468 0.103463203 0.12727273
##            8           9         10         11
## A 0.00000000 0.000000000 0.00000000 0.00000000
## B 0.01818182 0.006060606 0.00000000 0.00000000
## C 0.03636364 0.012121212 0.00000000 0.00000000
## D 0.12727273 0.133333333 0.13636364 0.13636364
## E 0.14545455 0.157575758 0.16363636 0.16363636
## F 0.10909091 0.109090909 0.10909091 0.10909091
## G 0.10909091 0.109090909 0.10909091 0.10909091
## H 0.12727273 0.133333333 0.13636364 0.13636364
## I 0.09090909 0.090909091 0.09090909 0.09090909
## J 0.09090909 0.090909091 0.09090909 0.09090909
## K 0.14545455 0.157575758 0.16363636 0.16363636
## - - - - - - - - - - 
## Relative Rank Probabilities (row ranked lower than col)
##            A          B         C         D         E         F         G
## A 0.00000000 0.66666667 1.0000000 0.9523810 1.0000000 1.0000000 1.0000000
## B 0.33333333 0.00000000 0.6666667 1.0000000 0.9166667 0.8333333 0.8333333
## C 0.00000000 0.33333333 0.0000000 0.7976190 1.0000000 0.7500000 0.7500000
## D 0.04761905 0.00000000 0.2023810 0.0000000 0.5595238 0.4404762 0.4404762
## E 0.00000000 0.08333333 0.0000000 0.4404762 0.0000000 0.3750000 0.3750000
## F 0.00000000 0.16666667 0.2500000 0.5595238 0.6250000 0.0000000 0.5000000
## G 0.00000000 0.16666667 0.2500000 0.5595238 0.6250000 0.5000000 0.0000000
## H 0.04761905 0.00000000 0.2023810 0.5000000 0.5595238 0.4404762 0.4404762
## I 0.14285714 0.25000000 0.3571429 0.6250000 0.6785714 0.5714286 0.5714286
## J 0.14285714 0.25000000 0.3571429 0.6250000 0.6785714 0.5714286 0.5714286
## K 0.00000000 0.08333333 0.0000000 0.4404762 0.5000000 0.3750000 0.3750000
##           H         I         J         K
## A 0.9523810 0.8571429 0.8571429 1.0000000
## B 1.0000000 0.7500000 0.7500000 0.9166667
## C 0.7976190 0.6428571 0.6428571 1.0000000
## D 0.5000000 0.3750000 0.3750000 0.5595238
## E 0.4404762 0.3214286 0.3214286 0.5000000
## F 0.5595238 0.4285714 0.4285714 0.6250000
## G 0.5595238 0.4285714 0.4285714 0.6250000
## H 0.0000000 0.3750000 0.3750000 0.5595238
## I 0.6250000 0.0000000 0.5000000 0.6785714
## J 0.6250000 0.5000000 0.0000000 0.6785714
## K 0.4404762 0.3214286 0.3214286 0.0000000
## - - - - - - - - - - 
## Expected Ranks (higher values are better)
##        A        B        C        D        E        F        G        H 
## 1.714286 3.000000 4.285714 7.500000 8.142857 6.857143 6.857143 7.500000 
##        I        J        K 
## 6.000000 6.000000 8.142857 
## - - - - - - - - - - 
## SD of Rank Probabilities
##         A         B         C         D         E         F         G         H 
## 0.9583148 1.8973666 1.7249667 2.5396850 2.1599320 2.7217941 2.7217941 2.5396850 
##         I         J         K 
## 3.1622777 3.1622777 2.1599320 
## - - - - - - - - - -

The function returns an object of type which contains the result of a full probabilistic rank analysis. The specific list entries are discussed in the following subsections.

Rank Probabilities

Instead of insisting on fixed ranks of nodes as given by indices, we can use rank probabilities to assess the likelihood of certain rank. Formally, rank probabilities are simply defined as P(rk(u)=k)=|{rk():rk(u)=k}||()|. P(rk(u)=k)=\frac{\lvert \{rk \in \mathcal{R}(\leq) \; : \; rk(u)=k\} \rvert}{\lvert \mathcal{R}(\leq) \rvert}. Rank probabilities are given by the return value rank.prob of the exact_rank_prob() function.

rp <- round(res$rank.prob,2)
rp
##      1    2    3    4    5    6    7    8    9   10   11
## A 0.55 0.27 0.12 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00
## B 0.27 0.22 0.17 0.13 0.09 0.06 0.04 0.02 0.01 0.00 0.00
## C 0.00 0.16 0.22 0.21 0.17 0.12 0.07 0.04 0.01 0.00 0.00
## D 0.00 0.03 0.05 0.07 0.09 0.11 0.12 0.13 0.13 0.14 0.14
## E 0.00 0.00 0.02 0.05 0.08 0.10 0.13 0.15 0.16 0.16 0.16
## F 0.00 0.05 0.08 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11
## G 0.00 0.05 0.08 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11
## H 0.00 0.03 0.05 0.07 0.09 0.11 0.12 0.13 0.13 0.14 0.14
## I 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
## J 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
## K 0.00 0.00 0.02 0.05 0.08 0.10 0.13 0.15 0.16 0.16 0.16

Entries rp[u,k] correspond to P(rk(u)=k)P(rk(u)=k).

The most interesting probabilities are certainly P(rk(u)=n)P(rk(u)=n), that is how likely is it for a node to be the most central.

rp[,11]
##    A    B    C    D    E    F    G    H    I    J    K 
## 0.00 0.00 0.00 0.14 0.16 0.11 0.11 0.14 0.09 0.09 0.16

Recall from the previous section that we found five indices that ranked 6,7,8,106,7,8,10 and 1111 on top. The probability tell us now, how likely it is to find an index that rank these nodes on top. In this case, node 1111 has the highest probability to be the most central node.

Relative Rank Probabilities

In some cases, we might not necessarily be interested in a complete ranking of nodes, but only in the relative position of a subset of nodes. This idea leads to relative rank probabilities, that is formally defined as P(rk(u)rk(v))=|{rk():rk(u)rk(v)}||()|. P(rk(u)\leq rk(v))=\frac{\lvert \{rk \in \mathcal{R}(\leq) \; : \; rk(u)\leq rk(v)\} \rvert}{\lvert \mathcal{R}(\leq) \rvert}. Relative rank probabilities are given by the return value relative.rank of the exact_rank_prob() function.

rrp <- round(res$relative.rank,2)
rrp
##      A    B    C    D    E    F    G    H    I    J    K
## A 0.00 0.67 1.00 0.95 1.00 1.00 1.00 0.95 0.86 0.86 1.00
## B 0.33 0.00 0.67 1.00 0.92 0.83 0.83 1.00 0.75 0.75 0.92
## C 0.00 0.33 0.00 0.80 1.00 0.75 0.75 0.80 0.64 0.64 1.00
## D 0.05 0.00 0.20 0.00 0.56 0.44 0.44 0.50 0.38 0.38 0.56
## E 0.00 0.08 0.00 0.44 0.00 0.38 0.38 0.44 0.32 0.32 0.50
## F 0.00 0.17 0.25 0.56 0.62 0.00 0.50 0.56 0.43 0.43 0.62
## G 0.00 0.17 0.25 0.56 0.62 0.50 0.00 0.56 0.43 0.43 0.62
## H 0.05 0.00 0.20 0.50 0.56 0.44 0.44 0.00 0.38 0.38 0.56
## I 0.14 0.25 0.36 0.62 0.68 0.57 0.57 0.62 0.00 0.50 0.68
## J 0.14 0.25 0.36 0.62 0.68 0.57 0.57 0.62 0.50 0.00 0.68
## K 0.00 0.08 0.00 0.44 0.50 0.37 0.37 0.44 0.32 0.32 0.00

Entries rrp[u,v] correspond to P(rk(u)rk(v))P(rk(u)\leq rk(v)).

The more a value rrp[u,v] deviates from 0.50.5 towards 11, the more confidence we gain that a node vv is more central than a node uu.

###Expected Ranks The expected rank of a node in centrality rankings is defined as the expected value of the rank probability distribution. That is, ρ(u)=k=1nkP(rk(u)=k). \rho(u)=\sum_{k=1}^n k\cdot P(rk(u)=k). Expected ranks are given by the return value expected.rank of the exact_rank_prob() function.

ex_rk <- round(res$expected.rank,2)
ex_rk
##    A    B    C    D    E    F    G    H    I    J    K 
## 1.71 3.00 4.29 7.50 8.14 6.86 6.86 7.50 6.00 6.00 8.14

As a reminder, the higher the numeric rank, the more central a node is. In this case, node 1111 has the highest expected rank in any centrality ranking.